Menü öffnen

Kurzstudie des Fraunhofer ISEBatteriegroßspeicher an ehemaligen Kraftwerksstandorten sinnvoll

Grafik zu Speicherkapazitäten in Deutschland: Je nach Region über- oder unterschreiten die Anschlussleistungen der konventionellen Kraftwerke den Speicherbedarf
Je nach Region über- oder unterschreiten die Anschlussleistungen der konventionellen Kraftwerke den Speicherbedarf. (Bildquelle: © Fraunhofer ISE)

Für eine sichere Stromversorgung basierend auf 100 Prozent Erneuerbaren Energien sind stationäre Batteriespeicher in großem Umfang notwendig. Es wäre vorteilhaft, diese an ehemaligen Standorten von fossilen oder Atomkraftwerken zu installieren.

13.05.2022 – Bis 2030 werden nach den Szenarienrechnungen des Fraunhofer-Instituts für Solare Energiesysteme ISE in Deutschland etwa 100 GWhel an elektrischer Speicherkapazität benötigt, bis 2045 etwa 180 GWhel. In der Kurzstudie Batteriespeicher an ehemaligen Kraftwerksstandorten hat das Institut deshalb nun den systemischen und netztechnischen Nutzen von Großspeichern untersucht. Ein Ergebnis ist, das es sinnvoll wäre, Batteriespeicher an ehemaligen Standorten von fossilen oder Atomkraftwerken zu installieren, da die dort bereits verfügbare Anschlussleistung genutzt werden kann. Bis zu 65 Prozent des bis 2030 in Deutschland benötigten Speicherbedarfs könnte damit gedeckt werden.

Stationäre Großspeicher können als schnell verfügbare Kurzzeitspeicher große Mengen fluktuierender und regional verteilter Einspeisung aus Photovoltaik- und Windkraftanlagen ins Stromnetz integrieren. Sie nutzen zudem durch eine zeitliche Verschiebung die Übertragungskapazitäten der Stromnetze besser aus und reduzieren damit den benötigten Netzausbau, erläutern die Fraunhofer Forscher.

Aufgrund ihrer hochdynamischen Regelbarkeit spielen Batteriespeicher, die mit netzbildenden Wechselrichtern ausgestattet sind, zukünftig eine zentrale Rolle bei der dynamischen Stabilisierung der Stromnetze. Großspeicher übernehmen dabei die Netzstabilisierung der Spannungs- und Frequenzregelung, die bisher von konventionellen Must-Run-Kraftwerken erbracht wurde.

Nachnutzung konventioneller Kraftwerksstandorte

„Diese Großspeicher können an ehemaligen fossilen oder Atomkraftwerksstandorten installiert werden und so die dort vorhandene Anschlussleistung an das Stromnetz weiter nutzen“, erklärt Bernhard Wille-Haussmann, Gruppenleiter Netzbetrieb und Netzplanung. „Weitere Vorteile sind die bereits für die Energiewirtschaft gesicherten und akzeptierten Flächen, die vorhandene hochwertige Infrastruktur und das Fachpersonal. Zudem könnte man für den Abriss geplante Kosten einsparen oder umwidmen.“

In der Studie wurde für jede der zehn definierten Regionen, welche sich an deutschen Bundesländern orientieren, der Bedarf an stationären Großbatteriespeichern ermittelt und der Anschlussleistung der Kraftwerke gegenübergestellt. Dabei zeigte sich, dass in einigen Bundesländern ein signifikanter Anteil der benötigten Großspeicher an Kraftwerksstandorten angeschlossen werden kann.

So stehen in Baden-Württemberg 10,2 Gigawatt (GW) Anschlussleistung zur Verfügung, damit könnten alle für 2030 berechneten stationären Batteriespeicher (8,7 GW) angeschlossen werden. In Nordrhein-Westfalen steht mit 16 GW an jetzigen Kohlekraftwerksstandorten nahezu die doppelte Anschlussleistung der benötigten Speicher (9,4 GW) zur Verfügung. Dies ist allerdings nicht in allen Regionen der Fall. In der Region Sachsen-Anhalt-Thüringen steht die geringste Leistung (1,1 GW) einem Speicherbedarf von 7,6 GW gegenüber.

„Allein die AKW-Standorte mit ihrer Gesamt-Anschlussleistung von 26,8 GW könnten bis zu einem Viertel der für die Energiewende bis 2030 benötigten Anschlussleistung für Batterien bereitstellen. Betrachtet man die verfügbare Fläche, könnten rund die Hälfte der benötigten 100 GWh Speicherkapazität an diesen Standorten platziert werden“, so Haussmann. Unter Hinzunahme der Steinkohle- und Braunkohlekraftwerke erhöht sich die Anschlussleistung nochmals erheblich auf 67,6 GW, das entspricht 65 Prozent des bis 2030 benötigten Speicherbedarfs.

Speicher reduzieren Netzbelastung

In der Studie modellierte das Forscherteam des Fraunhofer ISE mit dem Energiesystemmodell REMod auch die zukünftigen Lastkurven in den zehn deutschen Regionen und berechnete mit dem Netzmodell PyPsa die Auslastung der Stromleitungen zwischen den Regionen im Jahr 2030. Dabei wurde der Netzausbau entsprechend dem Netzentwicklungsplan einbezogen. Besonders zwischen Norden (Windstrom) und Süden (PV-Strom) sowie zwischen Osten und Westen sind danach Überlastungen der Leitungen zu erwarten.

„Wenn wir nun die in den Regionen bereits vorhandenen Anschlussleistungen der konventionellen Kraftwerke für Großspeicher nutzen, kann zum einen der zunehmende Tag-Nacht-Ausgleich für Solarenergie erfolgen, zum anderen der Netzausbau reduziert werden“, erklärt Prof. Christof Wittwer, Bereichsleiter Leistungselektronik, Netze und intelligente Systeme am Fraunhofer ISE.

Weiteren Forschungsbedarf sieht das Fraunhofer ISE bei der Regionalisierung der Energieszenarien und der Detaillierung der Übertragungsnetzmodelle, einschließlich des Einflusses von wechselrichterdominierten Verteilnetzen. Mit der Einbeziehung dieser erweiterten Modelle könnten die zukünftigen Anschlussorte bedarfsgerechter geplant werden.


Mehr zum Thema


Kommentare

Diskutieren Sie über diesen Artikel

Hanno Klausmeier 30.12.2023, 10:58:02

Hallo,

verstehe nicht warum hier der Bedarf an Batteriespeichern so niedrig angesetzt wird. Ich komme eher auf 2 - 5 TWh. Auch die Steigerung zwischen 2030 - 2040 als glatte Funktion erschliesst sich mir nicht. Batteriepreise werden fallen also wird es mehr Nachfrage geben.

Ansonsten guter Artikel.

 

Gruss Hanno Klausmeier


Neuen Kommentar schreiben


Name: *
E-Mail: *
(wird nicht veröffentlicht)
Nicht ausfüllen!


Kommentar: *

(wird nicht veröffentlicht)
max 2.000 Zeichen


energiezukunft